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Abstract

Lundblad(2007,JFE) shows that the risk-return tradeoff is unequivocally positive with

a two-century history of equity market data. A further examination of the relation

with the UK monthly stock returns from 1836 to 2010 produces rather weak risk-return

relation. I show that the risk-return relation is mostly positive but varies considerably

over time based on a new nonlinear ICAPM with multivariate GARCH-M terms with the

time-varying risk-return tradeoffs and hedging coefficients. The often observed negative

risk-return relation is also statistically insignificant with the 95% confidence bounds.

The hedging coefficients also vary significantly across time. This complex nonlinearity

seems to be the main culprit of the weak risk-return relation.

Keywords: Time-varying Risk-Return Tradeoff and Hedging Coefficient, ICAPM, State-

Space models with GARCH

JEL Classification: G12, C15, C22



1 Introduction

Mainstream asset pricing theories such as the CAPM or ICAPM implies a positive risk-

return tradeoff. While the risk-return tradeoff is fundamental to finance, the empirical

evidence has been rather inconclusive. For example, French, Schwert, and Stambaugh

(1987) and Scruggs (1998) find a positive relation between the expected excess market

return and conditional variance, whereas Glosten, Jagannathan, and Runkle (1993) and

Scruggs and Glabadanidis (2003) find either a negative or insignificant relation.

Using the nearly two-century history of the equity market data, Lundblad (2007)

finds that the risk-return relationship is positive and significant regardless of GARCH

specifications. His Monte Carlo analysis shows that researchers need more than 100

years of data to estimate the relation between the market risk premium and conditional

volatility with any precision. He argues that the weak empirical relationship found from

the previous research may be viewed as a statistical artefact of small samples and that

in the GARCH-M context, one simply requires sufficiently a long span of data in order

to detect this relationship.

In this paper, I re-examine the issue with continuously compounded UK stock and

bond returns with a two-century of data from 1836:01 to 2010:12. I first estimate a

univariate GARCH-M model as in Lundblad (2007). I first present evidence that a

long span of time-series does not seem to guarantee a significantly positive risk-return

relation in the univariate model. I find rather weak evidence for the positive relation. I

also extend his specification and estimate a version of ICAPM with two factors employed

in Scruggs and Glabadanidis (2003) and find that even this two-factor model produces

rather weak risk-return relation.

Theoretically, the risk-return tradeoff can be time-varying with any sign. In most

popular asset pricing models such as the CAPM or ICAPM, the source of time-varying
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relation could be time-varying positive risk aversion. However, the negative relation

can be also justifiable. For example, Whitelaw (2000) shows that the negative relation

exists when the market excess returns acts as a proxy for hedging components in a

regime switching consumption based model. Furthermore several empirical studies such

as Whitelaw (1994) and Brandt and Qiang (2004) show that the risk-return relation is

unstable.

In this paper, I develop a new nonlinear two-factor ICAPM with bivariate GARCH-

M models to incorporate this unstable risk-return relation. Because it is not easy to

determine the sources of time-varying relation in the long run data due to historical data

limitation, I propose an econometric model based on state space model with GARCH

with the latent time-varying risk-return tradeoffs and the latent hedging coefficients.1 In

summary I find that the risk-return relation is largely positive across time. Even when

the point estimate indicates the negative relation, it is not statistically different from

zeros with 95% confidence bounds. The hedging coefficients also vary a lot across time

with negative signs in most cases. I argue that the time-varying risk-return trade-off is

the main reason for the weak risk-return relation.

The remainder of this paper is organized as follows: Section 2 provides the theoretical

framework and the empirical models for the risk-return relationship. Section 3 presents

the econometric methodology to estimate the proposed nonlinear ICAPM. In Section

4, the historical data and the sources are discussed and time-series evidence on the

risk-return relationship with the usual conditional CAPM and ICAPM are provided. In

Section 5, I present empirical results with a nonlinear ICAPM with the time-varying

risk-return trade-off and the changing hedging coefficient. Finally, Section 6 concludes.

1In the previous version of this paper, I also estimate the similar model with time-varying risk-return
trade-off and constant hedging coefficients. It produces largely similar results. The results are available
upon request.
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2 Risk and Return in Equilibrium

Merton (1973) derives the dynamic risk-return trade-off between the conditional mean of

the return on the wealth portfolio, Et [rM,t+1], in relation to its conditional variance, σ2
M,t

and the conditional covariance with variation in the investment opportunity set,σMF,t:

Et [rM,t+1 − rf,t] =

[
−JWWW

JW

]
σ2
M,t +

[
−JWF

JW

]
σMF,t (2.1)

where J (W (t) , F (t) , t) is the indirect utility function in wealth, W (t), and F (t) de-

scribing the evolution of the investment opportunity set over time; subscripts denote

partial derivatives, and
[
−JWWW

JW

]
is the coefficient of relative risk aversion, denoted as

λM , which is typically assumed to be positive. The
[
−JWFW

JW

]
in the second component

describes the hedging coefficient. The sign of the hedging coefficient is indeterminate

because it depends on the relationship between the marginal utility of wealth and the

state of the world, and the conditional covariance. If the investment opportunity set is

time-invariant, Merton (1980) shows that the hedging component is negligible and the

conditional excess market return is proportional to its conditional variance.

Et [rM,t+1 − rf,t] =

[
−JWWW

JW

]
σ2
M,t (2.2)

Since Merton (1980), this conditional CAPM specification has been subject to dozens

of empirical investigations. In this paper, I first estimate the following univariate

GARCH-M model (Model 1) used in Lundblad (2007).

rM,t+1 − rf,t = λ0 + λMσ
2
M,t + εt+1 (2.3)

where εt+1 is mean zero with conditional variance (σ2
M,t), σ

2
M,t+1 = δ0 + δ1εt

2 + δ2σ
2
M,t.

rM,t+1 − rf,t is the stock market return in excess of the conditionally risk free rate.
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Lundblad (2007) finds that in this specification, λM is positive and statistically sig-

nificant with a long span of U.S. data. λ0 is added to account for transaction costs or

taxes. In preliminary empirical investigations, I experimented with various asymmetric

GARCH specifications but the asymmetric terms are statistically insignificant for both

stock and bond returns data. Therefore, I present empirical results only with the usual

symmetric GARCH specifications.

Scruggs (1998) argues that the partial relationship between market risk premia and

conditional volatility can be masked in the univariate context by failing to account for the

additional hedging demands associated with a time varying investment opportunity set.

Based on this observation, I estimate the following time-invariant two-factor ICAPM:

Et [rM,t+1 − rf,t] = λ0 + λMσ
2
M,t + λFσMF,t

Following Scruggs (1998) and Scruggs and Glabadanidis (2003) I use the long term

bond return in excess of the risk free as a proxy for hedging portfolios. Specifically, I

employ the following bivariate GARCH-M (Model 2). I constrain the prices of risk and

hedging coefficient to be identical across markets consistent with the ICAPM theory.

rM,t+1 − rf,t = λ0,M + λMσ
2
M,t + λFσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λMσ
2
MF,t + λFσ

2
F,t + εF,t+1

cov [εM,t+1, εF,t+1|ψt] = Σt,Σt =

 σ2
M,t σMF,t

σMF,t σ2
F,t

 (2.4)

where rF,t+1 − rf,t is the long term bond return in excess of the conditionally risk free

rate. ψt is the information set up to time t.

To describe the time-series evolution of the stock and bond market return conditional

covariance matrix, I employ the following diagonal BEKK (1,1) specification.
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Σt =

 c11 c12

0 c22

′  c11 c12

0 c22

+

 a11 0

0 a22

′ ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

 a11 0

0 a22


+

 b11 0

0 b22

′

Σt−1

 b11 0

0 b22



This specification guarantees the positive definiteness of the conditional covariance

matrix, and yet allows time variation in conditional variances, covariances, and corre-

lations across these markets. Consistent with the univariate GARCH-M analysis of the

market portfolio returns and bond returns, I do not include asymmetric terms.

Finally, I generalize the ICAPM with the time-varying risk-return tradeoff and the

changing hedging coefficient. Lundblad (2007) provides some preliminary evidence to

show that the fundamental risk-return relationship has changed over time. While he

presents evidence only within univariate context, I employ the following bivariate model

allowing both time-varying risk-return relation and hedging coefficient (Model 3).

rM,t+1 − rf,t = λ0,M + λM,tσ
2
M,t + λF,tσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λM,tσ
2
MF,t + λF,tσ

2
F,t + εF,t+1

cov [εM,t+1, εF,t+1|ψt] = Σt,Σt =

 σ2
M,t σMF,t

σMF,t σ2
F,t

 (2.5)

where λM,t = λM,t−1+ εt, εt ∼ N(0, σ2
m) , λF,t = λF,t−1+ ηt, ηt ∼ N(0, σ2

f ), Σt follows the

same BEKK(1,1) as in the two-factor ICAPM.

A driftless random walk coefficient specification is often used to capture a persistent

yet slow movement in time-varying coefficient models with stochastic volatility (e.g.

Cogley and Sargent (2005)). I follow this tradition to facilitate the estimation with
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parsimonious empirical models.

3 Estimation Methods for a Nonlinear ICAPM

I present the estimation framework for the proposed nonlinar ICAPM (Model 3) as the

following state space model with GARCH terms.

Measurement equation:

 rM,t − rf,t−1

rF,t − rf,t−1

 =

 σ2
M,t−1 σMF,t−1

σMF,t−1 σ2
F,t−1

 λM,t−1

λF,t−1

+

 λ0,M

λ0,F

+

 εM,t

εF,t


 εM,t

εF,t

|ψt−1

 ∼ N

 02

 σ2
M,t−1 σMF,t−1

σMF,t−1 σ2
F,t−1

 

In matrix terms, yt = Σt−1βt−1 + A+ εt, εt ∼ N(0,Σt−1)

where ψt−1 is the information set up to time t-1. Σt =

 σ2
M,t σMF,t

σMF,t σ2
F,t

 with diagonal

BEKK (1,1), yt is a 2 x 1 vectors of returns observed at time t; βt is a 2 x 1 vector of

unobserved state variables; Σt−1 is a 2 x 2 matrix that links the observed vector yt and

the unobserved βt ; A is a 2 x 1 constant vector.

Transition equation: λM,t

λF,t

 =

 1 0

0 1

 λM,t−1

λF,t−1

+
 ωM,t

ωF,t

 ,
 ωM,t

ωF,t

 ∼ N

 02

 σ2
m 0

0 σ2
f

 
In matrix terms, βt = Fβt−1 + ωt, ωt ∼ N(0, Q)

where βt is a 2 x 1 vector of unobserved state variables; F is 2 x 2 ; ωt is 2 x 1.
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Following Harvey, Ruiz, and Sentana (1992), I augment the heteroskedastic shocks

into the original state vector in the transition equation to get the conditional expectations

of the squares of the unobserved shocks. The transformed state space model has modified

equations as follows.

Measurement equation:

 rM,t − rf,t−1

rF,t − rf,t−1

 =

 0 0 σ2
M,t−1 σMF,t−1 1 0

0 0 σMF,t−1 σ2
F,t−1 0 1





λM,t

λF,t

λM,t−1

λF,t−1

εM,t

εF,t


+

 λ0,M

λ0,F



In matrix terms, yt = Ht
∗β∗

t + A∗.

Transition equation:



λM,t

λF,t

λM,t−1

λF,t−1

εM,t

εF,t


=



1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





λM,t−1

λF,t−1

λM,t−2

λF,t−2

εM,t−1

εF,t−1


+



ωM,t

ωF,t

λM,t−1

λF,t−1

εM,t

εF,t


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

ωM,t

ωF,t

λM,t−1

λF,t−1

εM,t

εF,t


∼ N


06



σ2
m 0 0 0 0 0

0 σ2
f 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 σ2
M,t−1 σMF,t−1

0 0 0 0 σMF,t−1 σ2
F,t−1




In matrix terms, the transformed transition equation is stated as β∗

t = F ∗βt−1 +

ω∗
t , ω

∗
t ∼ N(0, Qt

∗)

Given the model’s parameters, the linear Kalman filter for the state-space model

consists of the following six equations:2

Prediction:

βt|t−1
∗ = F ∗βt−1|t−1

∗,

pt|t−1
∗ = F ∗pt−1|t−1

∗F ∗′ +Qt
∗,

ηt|t−1
∗ = yt −Ht

∗βt|t−1
∗ − A∗,

ft|t−1
∗ = Ht

∗pt|t−1
∗Ht

∗′,

where βt|t−1
∗ = E[βt

∗|ψt−1], βt−1|t−1
∗ = E[βt−1

∗|ψt−1], pt|t−1
∗ = E[(βt

∗ − E[βt
∗|ψt−1])

2],

pt−1|t−1
∗ = E[(βt−1

∗ − E[βt−1
∗|ψt−1])

2], ηt|t−1
∗ = yt − E[yt|ψt−1], ft|t−1

∗ = E[(ηt|t−1
∗)2].

Updating:

βt|t
∗ = βt|t−1

∗ + pt|t−1
∗Ht

∗′ft|t−1
∗−1ηt|t−1

∗,

pt|t
∗ = pt|t−1

∗ − pt−1|t−1
∗Ht

∗′ft|t−1
∗−1Ht

∗pt|t−1
∗,

where βt|t
∗ = E[βt

∗|ψt], pt|t
∗ = E[(βt

∗ − E[βt
∗|ψt])

2].

To process the above Kalman filter, following Harvey, Ruiz, and Sentana (1992), I

approximate ε2M,t−1 (ε
2
F,t−1) with E[ε

2
M,t−1|ψt−1] (E[ε

2
F,t−1|ψt−1]) respectively in the Σt−1

2I closely follow the notations in the chapter 6 of Kim and Nelson (1999).
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matrix.

Given the fact that εM,t−1 = E[εM,t−1|ψt−1] + εM,t−1 − E[εM,t−1|ψt−1], εF,t−1 =

E[εF,t−1|ψt−1] + εF,t−1 − E[εF,t−1|ψt−1], we compute E[ε2M,t−1|ψt−1] = E[εM,t−1|ψt−1]
2 +

E[(εM,t−1 − E[εM,t−1|ψt−1])
2] and E[ε2F,t−1|ψt−1] = E[εF,t−1|ψt−1]

2+E[(εF,t−1 − E[εF,t−1|ψt−1])
2]

where E[εM,t−1|ψt−1] and E[εF,t−1|ψt−1] are obtained from the last two elements of

βt−1|t−1
∗. E[(εM,t−1 − E[εM,t−1|ψt−1])

2] and E[(εF,t−1 − E[εF,t−1|ψt−1])
2] are obtained

from the last two diagonal elements of pt−1|t−1
∗.

Finally, I approximate εM,t−1εF,t−1 as (E[ε
2
M,t−1|ψt−1]E[ε

2
F,t−1|ψt−1])

0.5 . Because this

last approximation of εM,t−1εF,t−1 implicitly assumes that two shocks should have the

same signs, I should denote this model as an approximate BEKK model. However, the

approximation errors are minimal using U.K. data in this paper. The GARCH variance

and covariance estimates presented in the Section 5 for this model are almost same as

those from a bivariate GARCH-M with BEKK specification.

As by-products of the above Kalman filter, I obtain the prediction error ηt|t−1
∗ and

its variance ft|t−1
∗. This prediction error decomposition induces the approximate log

likelihood as follows.

lnL = −1

2

T∑
t=1

ln((2π)n|ft|t−1
∗|)− 1

2

T∑
t=1

ηt|t−1
∗′ft|t−1

∗−1ηt|t−1
∗

which can be maximized with respect to the unknown parameters of the model for an

approximate Quasi-MLE.
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4 Empirical Analysis

4.1 Data Description

As Lundblad (2007) carefully demonstrates, we need a long span of data to investigate

the risk-return trade-off to enhance the power of the time-series analysis. To maximize

the power of the time-series analysis, I employ the longest monthly UK equity and bond

market data from 1836:01 to 2010:12. Earlier U.K. data extending back to 1800 are

also available, but I exclude this sample because the stock market data only represent

a simple equal weighted average of three shares: the Bank of England, the East India

Company, and the South Sea Company. For a more detailed explanation on the data

sources, see the documentation from www.globalfindata.com.

The UK historical stock data (ticker symbol: TFTASD) are taken from the Global

Financial Data provider, and represent the FTSE All Shares historical index. I also

collect total return data for the UK short-term bill (ticker symbol: TRGBRBIM) and

long-term consol bond (ticker symbol: TRGBRGCM) from the same provider. Short-

term bill data will serve as the conditionally risk-free rate in my analysis. As suggested

by Merton (1973) and Scruggs (1998), I collect long-term U.K. bond returns to capture

variation in the investment opportunity set over time.

Table 1 reports summary statistics on the total returns for the U.K. equity market,

rM,t, the bond market, rF,t , and the short bill return (the conditionally risk-free rate),

rf,t , for the full sample. All variables are expressed as continuously compounded returns.

The return data for each series are also displayed in Figure 1. In the whole sample, the

mean return on the U.K. stock market portfolio is about 0.57% per month. As expected,

the stock market return is highly volatile (3.6% per month). Long term bond and short

term bill returns have similar lower mean return around 0.36% per month and also lower

volatility as expected.
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4.2 Expected Return - Volatility Tradeoff

4.2.1 The Conditional CAPM

Many previous studies on the risk-return tradeoff employ a univariate GARCH-M frame-

work. I reproduce this model (Model 1) for an easier explanation.

Et [rM,t+1 − rf,t] = λ0 + λMσ
2
M,t, σ

2
M,t+1 = δ0 + δ1εt

2 + δ2σ
2
M,t

In summary, these studies typically find a statistically insignificant or a negative

relationship between the market risk premium and its expected volatility. A notable

exception is Lundblad (2007). Using simulations, he demonstrates that even 100 years

of data constitute a small sample that may easily lead to this puzzling insignificant or

negative risk-return relation even though the true risk-return tradeoff is positive. Using

the nearly two century history of US equity market returns, Lundblad estimates a posi-

tive and statistically significant risk-return tradeoff across every specification considered.

While he also presents similar evidence with UK data, I find that the evidence might

not be robust.

Table 2 presents evidence on the risk-return tradeoff in the univariate context with a

long span of U.K. data from 1836:01 to 2010:12. I use continuously compounded returns

as in Scruggs (1998) and report the estimates with the usual symmetric GARCH-M

because I find that asymmetric terms in the GARCH specifications are not statistically

significant.3 The point estimate, presented in panel A, is 1.66 with a t statistics of 1.81,

which is quite different from Lundblad’s estimate using simple returns (2.469 with a

standard error of 0.906 in his table). To reconcile the difference, I also estimate the same

model with simple returns, and the estimates are provided in panel B. The mean variance

3Results are available upon request. Table 4 in Lundblad (2007) also presents evidence that asym-
metric GARCH models are unnecessary for U.K. data.
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tradeoff becomes positive (2.2522) and statistically significant. Because most papers in

this literature such as Scruggs (1998) employ continuously compounded returns, these

conflicting results from different ways of computing returns warrant further scrutiny.

Figure 2 displays the estimates of conditional market variance implied by the GARCH-

M model. Elevated volatility is most pronounced during the Great Depression, 1973-74

stock market crash, the recent global financial crises of the late 1990. This volatility

pattern seems to capture historical episodes well. For example, during the 1973-74 stock

market crash, London Stock Exchange’s FT 30 lost 73% of its value. The UK went into

recession in 1974, with GDP falling by 1.1 %. At the time, the UK’s property market

was going through a major crisis, and a secondary banking crisis forced the Bank of

England to bail out a number of lenders. After the definitive market low for the FT30

Index on January 6th 1975 when the index closed at 146, the market almost doubled

over next 3 months.

4.2.2 The Intertemporal CAPM

Scruggs (1998) argues that the partial relationship between risk premia and conditional

volatility can be masked in the univariate context by failing to account for the additional

hedging demands associated with a time varying investment opportunity set (essentially

generating an omitted variable bias). I will explore this issue in this section.

I estimate a bivariate GARCH-M model with BEKK (1,1) based on Scruggs and

Glabadanidis (2003) with the conditional mean of the market portfolio excess return

and the bond market excess return implied by the ICAPM. For the easier explanation,

I reproduce the empirical model below (Model 2).
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rM,t+1 − rf,t = λ0,M + λMσ
2
M,t + λFσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λMσ
2
MF,t + λFσ

2
F,t + εF,t+1

cov [εM,t+1, εF,t+1|ψt] = Σt,Σt =

 σ2
M,t σMF,t

σMF,t σ2
F,t


Consistent with the univariate GARCH-M analysis of the market portfolio returns

and bond returns4, I do not include asymmetric terms.

Table 3 presents estimation results for the two-factor ICAPM with diagonal BEKK

specification. First, the conditional variances for the bond and stock markets are per-

sistent (above 0.8) in the full historical record. Figure 3 presents time-series plots of the

conditional stock and bond return heteroskedasticities and the conditional covariance.

The equity variance displays similar patterns presented in the univariate model (see Fig-

ure 2). The bond variance is quite low compared with the stock variance but it increases

dramatically after 1980’s and especially during the recent crisis. Table 3 also present

evidence on the intertemporal relationship between risk and expected return. In Panel

A, for the whole sample, the partial relationships between the expected market excess

return and market conditional variance is positive and statistically significant with t

statistics of 2.09. However, the partial relationship between expected market excess re-

turns and covariance with variation in the investment opportunity set is not statistically

significant. Strictly speaking, a two factor ICAPM does not seem to be supported by

the data.

4.2.3 A Time-varying risk-return Tradeoff?

There are several concerns associated with the potentially strong assumption of a time-

invariant risk-return tradeoff. First, in equilibrium, the mean variance tradeoff can be

4The results of univariate GARCH-M for bond excess returns are available upon request
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interpreted as risk aversion and may exhibit cyclical variation through time as implied by

habit models such as Campbell and Cochrane (1999). Moreover, risk aversion may also

vary because of the evolution of financial markets and improved risk sharing. Motivated

by these observations, I conduct an empirical analysis of a time-varying risk-return

tradeoff, and investigate whether the proposed new nonlinear ICAPM shed light on the

puzzling risk-return relation.

Lundblad (2007) also conducts an exploratory analysis to allow the risk-return trade-

off coefficient to vary with several observable financial and macroeconomic indicators of

the development of the U.S. financial market and economy. However, Lundblad employs

only univariate models in this context. Without fully applying time-varying coefficients

in the risk-return tradeoff, it is unclear if the time-varying relation exist or it just indi-

cates misspecifications. Due to the limit of historical data, I choose econometric models

with latent factors to estimate the unstable relation rather than to use the models

with exogenous variables. Before conducting a formal econometric analysis in the next

section, I present preliminary evidence of instability by estimating the two-factor time-

invariant ICAPM recursively at least with 10 years of data starting from 1846:01. Figure

4 presents these rolling sample estimates of the risk-return tradeoff and the hedging co-

efficient from the ICAPM. While it is difficult to argue for the time-varying risk-return

relation with any formal statistics at this stage, it looks as if both the risk-return tradeoff

and the hedging coefficients vary a lot.

5 A Time-varying risk-return Tradeoff with a Non-

linear ICAPM

Motivated by theoretical arguments and preliminary rolling estimates of the ICAPM,

I estimate a nonlinear ICAPM with the time-varying risk-return tradeoff and hedging

14



coefficients (Model 3). I reproduce the empirical model for an easier explanation.

rM,t+1 − rf,t = λ0,M + λM,tσ
2
M,t + λF,tσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λM,tσ
2
MF,t + λF,tσ

2
F,t + εF,t+1

cov [εM,t+1, εF,t+1|ψt] = Σt,Σt =

 σ2
M,t σMF,t

σMF,t σ2
F,t


where λM,t = λM,t−1 + εt, εt ∼ N(0, σ2

m), λF,t = λF,t−1 + ηt, ηt ∼ N(0, σ2
f ).

Table 4 presents parameter estimates of this nonlinear ICAPM. First, I find that

variance estimates in the time-varying risk-return (σv ) and hedging coefficients (σF )

are statistically significant at 5% level. This evidence is reassuring because it supports

the time-varying risk-return trade off and the changing hedging coefficient assumed

in the nonlinear ICAPM. Figure 5 presents time-series plots of the conditional stock

and bond return variances and the conditional stock-bond return covariance estimated

from this model. The stock return variance follows the same patterns presented in

the conditional CAPM and ICAPM (see Figure 2 and 3). The bond variance displays

clustering consistent with the estimates from ICAPM (see Figure 3) as well, increasing

dramatically during the early 1980’s. Over the full historical record, the conditional

covariance between the stock and bond market is a small positive number.

Figure 6 shows the time-varying risk-return relation and 95% confidence bands esti-

mated from the nonlinear ICAPM. The estimated partial expected market return volatil-

ity tradeoff is largely positive and statistically significant for the full historical record.

Further, this figure shows that the seemingly negative relation could be entirely spurious

because the estimated relation is not statistically different from zeros with the 95% con-

fidence bounds. The estimated hedging coefficient is also time-varying and negative over

the time (Figure 7). This evidence indicates that incorporating time-varying risk-return

relation and the changing coefficient in the hedging demands associated with variation in

15



the investment opportunity set is crucial to understand the puzzling risk-return tradeoff.

Contrary to the weak risk-return tradeoff provided with the time-invariant conditional

CAPM and ICAPM, I find that the expected market return conditional volatility tradeoff

is positive and statistically significant for the full historical record.

6 Conclusion

While the risk-return tradeoff is fundamental to finance, the empirical evidence on the

relationship between the risk premium on aggregate stock market and the variance of its

return is ambiguous at best. Lundblad (2007) argues the main culprit of this puzzling

relationships is the small sample problem. He finds a statistically significant positive

risk-return tradeoff using information from two century history of stock market returns

in all of the econometric specifications.

In this paper, I present new evidence that the risk-return trade-off is rather weak

even with the two century history of UK continuously compounded return data, when

I employ a time-invariant conditional CAPM or two-factor ICAPM. In the conditional

CAPM, the risk-return tradeoff parameter is positive yet statistically insignificant at 5%

level. When the time-varying investment opportunity set is explicitly accounted as the

hedging component, the risk-return tradeoff becomes positive and statistically significant

at 5% level. But one of the crucial implications of the ICAPM is rejected; the hedging

coefficient is insignificant even at 10% level.

Motivated by theoretical arguments and preliminary rolling estimates of the ICAPM,

I develop and estimate a nonlinear ICAPM with the time-varying risk-return tradeoff

and hedging coefficient. Consistent with the implication of the model, I find that vari-

ance estimates in the time-varying risk-return and hedging coefficients are statistically

significant at 1% level.

16



The estimated risk-return relation in this nonlinear ICAPM becomes largely positive

over the time. While the negative risk-return relation can be certainly observed, it is

statistically insignificant with the 95% confidence bounds. This complex nonlinearity

seems to be the main culprit of the weak risk-return relation observed in the literature.
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This figure plots the monthly time series of returns on U.K. stock market portfolios (rM,t), long term
bond returns (rF,t), and the return on the short term bill (rf,t) are obtained from the Global Financial
Data provider. All variables are expressed as continuously compounded returns.

Figure 1: Time Series Plots of Asset Returns (1836:01 - 2010:12)
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This figure plots the monthly time series of conditional variance of the U.K. stock market excess re-
turns (rM,t-rf,t) estimated by the GARCH-M from 1836:01 to 2010:12. Returns on U.K. stock market
portfolios (rM,t) and the return on the short term bill (rf,t) are obtained from the Global Financial
Data provider. All variables are expressed as continuously compounded returns. The mean equation
is: rM,t+1 − rf,t = λ0 + λMσ2

M,t + εt+1, where εt+1 is mean zero with the conditional variance (σ2
M,t),

σ2
M,t+1 = δ0 + δ1ε

2
t + δ2σ

2
M,t

Figure 2: Conditional Equity Variance from a Conditional CAPM
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This figure plots the monthly time series of conditional variances of the U.K. stock market excess
returns (rM,t-rf,t) and of the U.K. bond market excess returns (rF,t-rf,t) and their covariance estimated
by the two-factor ICAPM with BEKK (1,1) from 1836:01 to 2010:12. Returns on U.K. stock market
portfolios (rM,t), long term bond returns (rF,t), and the return on the short term bill (rf,t) are obtained
from the Global Financial Data provider. All variables are expressed as continuously compounded
returns.

The two-factor ICAPM with BEKK (1,1):

rM,t+1 − rf,t = λ0,M + λMσ2
M,t + λFσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λMσ2
MF,t + λFσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Figure 3: Conditional Covariance Matrix Estimates from a two-factor ICAPM
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This figure plots the monthly time series of rolling estimates of the price of risk and hedging coefficients
estimated by the two-factor ICAPM with BEKK (1,1) from 1836:01 to 2010:12. Returns on U.K. stock
market portfolios (rM,t), long term bond returns (rF,t), and the return on the short term bill (rf,t)
are obtained from the Global Financial Data provider. All variables are expressed as continuously
compounded returns.

The two-factor ICAPM with BEKK (1,1):

rM,t+1 − rf,t = λ0,M + λMσ2
M,t + λFσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λMσ2
MF,t + λFσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Figure 4: Rolling estimates of Risk Aversion and Hedging Coefficient
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This figure plots the monthly time series of conditional variances of the U.K. stock market excess
returns (rM,t-rf,t) and of the U.K. bond market excess returns (rF,t-rf,t) and their covariance estimated
by the two-factor nonlinear ICAPM with BEKK (1,1) from 1836:01 to 2010:12. Returns on U.K. stock
market portfolios (rM,t), long term bond returns (rF,t), and the return on the short term bill (rf,t)
are obtained from the Global Financial Data provider. All variables are expressed as continuously
compounded returns.

The two-factor nonlinear ICAPM with BEKK (1,1):
rM,t+1 − rf,t = λ0,M + λM,tσ

2
M,t + λF,tσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λM,tσ
2
MF,t + λF,tσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

where λM,t = λM,t−1 + εt, εt ∼ N(0, σ2
m) and λF,t = λF,t−1 + ηt, ηt ∼ N(0, σ2

f )

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Figure 5: Conditional Covariance Matrix Estimates from a two-factor nonlinear ICAPM22
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This figure plots the monthly time series of estimates of the time-varying price of risk and its confidence
intervals estimated by the two-factor nonlinear ICAPM with BEKK (1,1) from 1836:01 to 2010:12.
Returns on U.K. stock market portfolios (rM,t), long term bond returns (rF,t), and the return on the
short term bill (rf,t) are obtained from the Global Financial Data provider. All variables are expressed
as continuously compounded returns.

The two-factor nonlinear ICAPM with BEKK (1,1):
rM,t+1 − rf,t = λ0,M + λM,tσ

2
M,t + λF,tσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λM,tσ
2
MF,t + λF,tσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

where λM,t = λM,t−1 + εt, εt ∼ N(0, σ2
m) and λF,t = λF,t−1 + ηt, ηt ∼ N(0, σ2

f )

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Figure 6: Time-varying Risk-Return Tradeoff
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This figure plots the monthly time series of estimates of the time-varying hedging coefficient and its
confidence intervals estimated by the two-factor nonlinear ICAPM with BEKK (1,1) from 1836:01 to
2010:12. Returns on U.K. stock market portfolios (rM,t), long term bond returns (rF,t), and the return
on the short term bill (rf,t) are obtained from the Global Financial Data provider. All variables are
expressed as continuously compounded returns.

The two-factor nonlinear ICAPM with BEKK (1,1):
rM,t+1 − rf,t = λ0,M + λM,tσ

2
M,t + λF,tσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λM,tσ
2
MF,t + λF,tσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

where λM,t = λM,t−1 + εt, εt ∼ N(0, σ2
m) and λF,t = λF,t−1 + ηt, ηt ∼ N(0, σ2

f )

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Figure 7: Time-varying Hedging Coefficient
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Table 1: Descriptive Statistics (1836:01 - 2010:12) for Asset Returns

This table reports summary statistics and autocorrelation and correlations for returns on U.K. stock
market portfolios (rM,t), long term bond returns (rF,t), and the return on the short term bill (rf,t)
are obtained from the Global Financial Data provider. All variables are expressed as continuously
compounded monthly returns.

rM,t rF,t rf,t
Mean 0.0057 0.0037 0.0035

Std. Dev. 0.0365 0.0222 0.0025
Skewness 0.0094 0.3573 1.3743
Kurtosis 18.4920 7.4670 4.9298
Auto(1) 0.0870 0.1110 0.9850

rM,t rF,t rf,t
rM,t 1.0000
rF,t 0.2334 1.0000
rf,t 0.0324 0.0688 1.0000
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Table 2: Risk-Return Tradeoff: a Conditional CAPM

This table presents evidence on the conditional mean and volatility of the U.K. stock market portfolio
implied by the GARCH-M from 1836:01 to 2010:12. Returns on U.K. stock market portfolios (rM,t)
and the return on the short term bill (rf,t) are obtained from the Global Financial Data provider. Panel
A (B) presents estimation results with continuously compounded returns (simple returns). The mean
equation is: rM,t+1 − rf,t = λ0 + λMσ2

M,t + εt+1, where εt+1 is mean zero with the conditional variance

(σ2
M,t), σ

2
M,t+1 = δ0 + δ1ε

2
t + δ2σ

2
M,t

λ0 λM δ0 δ1 δ2

Panel A 0.0004 1.6668 0 0.1088 0.8951
t-stat 0.7005 1.8132 2.5851 6.1362 64.8426

Panel B 0.0005 2.2522 0 0.1109 0.8918
t-stat 0.7151 2.2554 2.7842 6.2697 63.8226

26



Table 3: Risk Return Tradeoff in the ICAPM

This table provides parameter estimates for a two-factor ICAPM with the U.K. stock market excess
returns (rM,t-rf,t) and the U.K. bond market excess returns (rF,t-rf,t) from 1836:01 to 2010:12.
Returns on U.K. stock market portfolios (rM,t), long term bond returns (rF,t), and the return on the
short term bill (rf,t) are obtained from the Global Financial Data provider. All variables are expressed
as continuously compounded returns.

The two-factor ICAPM with BEKK (1,1):

rM,t+1 − rf,t = λ0,M + λMσ2
M,t + λFσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λMσ2
MF,t + λFσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Panel A. Conditional Mean
S.E. t-stat

λ0,M 0.0004 0.0006 0.7662
λM 1.3247 0.6350 2.0862
λ0,F -0.0002 0.0004 -0.5696
λF 0.98780 1.3478 0.7330

Panel B. Conditional Variance
S.E. t-stat

c11 0.0030 0.0003 9.7926
c12 0.0006 0.0002 3.1362
c22 0.0015 0.0001 12.9421
a11 0.3565 0.0117 30.4533
a22 0.2388 0.0069 34.5690
b11 0.9377 0.0037 254.1151
b22 0.9702 0.0014 690.5052
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Table 4: Risk Return Tradeoff in the Nonlinear ICAPM

This table provides parameter estimates for a two-factor nonlinear ICAPM with the U.K. stock market
excess returns (rM,t-rf,t) and the U.K. bond market excess returns (rF,t-rf,t) from 1836:01 to 2010:12.
Returns on U.K. stock market portfolios (rM,t), long term bond returns (rF,t), and the return on the
short term bill (rf,t) are obtained from the Global Financial Data provider. All variables are expressed
as continuously compounded returns.

The two-factor nonlinear ICAPM with BEKK (1,1):
rM,t+1 − rf,t = λ0,M + λM,tσ

2
M,t + λF,tσMF,t + εM,t+1

rF,t+1 − rf,t = λ0,F + λM,tσ
2
MF,t + λF,tσ

2
F,t + εF,t+1

covt [εM,t+1, εF,t+1] = Σt

where λM,t = λM,t−1 + εt, εt ∼ N(0, σ2
m) and λF,t = λF,t−1 + ηt, ηt ∼ N(0, σ2

f )

Σt =

(
c11 c12
0 c22

)′ (
c11 c12
0 c22

)
+

(
a11 0
0 a22

)′ (
ε2M,t εM,tεF,t

εM,tεF,t ε2F,t

)(
a11 0
0 a22

)
+

(
b11 0
0 b22

)′

Σt−1

(
b11 0
0 b22

)

Panel A. Conditional Mean
S.E. t-stat

λ0,M -0.0020 0.0013 -1.8227
λ0,F 0.0058 0.0006 10.1628

Panel B. Conditional Variance
S.E. t-stat

c11 0.0011 0.0003 4.0086
c12 0.0049 0.0004 11.2319
c22 0.0009 0.0015 0.6095
a11 0.2558 0.0036 72.0414
a22 0.3483 0.0210 16.6001
b11 0.9727 0.0010 1015.3340
b22 0.9138 0.0127 72.0047

Panel C. TVP variance
S.E. t-stat

σv 0.4210 0.1159 3.6317
σF 0.2861 0.0730 3.9174
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